Adaptive Step Firefly Algorithm Based on Population Diversity
نویسندگان
چکیده
As a new swarm intelligence optimization method, firefly algorithm shows good performance on many complex optimization problems. However, due to the fixed parameters of FA, it is difficult to adapt to environmental changing during the iteration process, and FA easily lose its diversity and lead to premature convergence. In this paper, an adaptive step firefly algorithm based on population diversity called DASFA is proposed to improve the performance of FA.The DASFA designed an adaptive step which is decreasing as the search process and regulated by population diversity, it could help the algorithm maintains high diversity to getting out of the local optimal and finding the optimal value eventually. Experiments are conducted on ten classic benchmark functions, the results show that DASFA achieves better performance than FA and some its variants.
منابع مشابه
An adaptive modified firefly algorithm to unit commitment problem for large-scale power systems
Unit commitment (UC) problem tries to schedule output power of generation units to meet the system demand for the next several hours at minimum cost. UC adds a time dimension to the economic dispatch problem with the additional choice of turning generators to be on or off. In this paper, in order to improve both the exploitation and exploration abilities of the firefly algorithm (FA), a new mo...
متن کاملA Hybrid Grey based Two Steps Clustering and Firefly Algorithm for Portfolio Selection
Considering the concept of clustering, the main idea of the present study is based on the fact that all stocks for choosing and ranking will not be necessarily in one cluster. Taking the mentioned point into account, this study aims at offering a new methodology for making decisions concerning the formation of a portfolio of stocks in the stock market. To meet this end, Multiple-Criteria Decisi...
متن کاملSensitivity Analysis and Development of a Set of Rules to Operate FCC Process by Application of a Hybrid Model of ANFIS and Firefly Algorithm
Fluid catalytic cracking (FCC) process is a vital refinery process which majorly produces gasoline. In this research, a hybrid algorithm which was constituted of Adaptive Neuro-Fuzzy Inference System (ANFIS) and firefly optimization algorithm was developed to model the process and optimize the operating conditions. To conduct the research, industrial data of Abadan refinery FCC process were car...
متن کاملImproved speciation-based Firefly Algorithm in dynamic and uncertain environment
Many real-world optimization problems are dynamic in nature. The applied algorithm in this environment can pose serious challenges, especially when the search space is multimodal with multiple, time-varying optima. To address these challenges, this paper investigates a speciation-based firefly algorithm to enhance the population diversity with aim of generating several populations in different ...
متن کاملAn Improved Firefly Algorithm Based on Nonlinear Time-varying Step-size
Firefly algorithm (FA) is a novel population-based stochastic optimization algorithm and has been shown to yield good performance for solving varieties of optimization problems. Meanwhile, it sustains premature convergence because it is easily to fall into the local optima which may generate a low accuracy of solution or even fail. To overcome this defect, a nonlinear time-varying step strategy...
متن کامل